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Abstract-Formulas for upper and lower deflection bounds, in terms of appropriately applied approximations
to potential and complementary energy expressions, are evaluated on the basis of variational problems which
involve fourth-order ordinary Euler differential equations, with associated EUler and constraint boundary
conditions. The paper obtains new information on the order of magnitude of effects which modify the results of
elementary beam theory through the influence of transverse shear and normal strain deformations, including
the delineation of boundary layer effects, with one or two such layers, depending on the degree of orthotropy of
the material of the beam.

INTRODUCTION
In what follows we extend our earlier work on upper and lower bounds for the deflection of
end-loaded laminated cantilever beams of narrow rectangular cross section through use of the
principles of minimum potential and maximum complementary energy[l, 2].

Specifically, we propose to improve the bounds

Cu C CUI-<-<-
Co - Co - Co

for the flexibility coefficient C of an orthotropic homogeneous beam, where Co = a3/2Ec 3 is the
value of C in accordance with elementary theory and where

and

with

effectively, when O:s c /a :s YEy/G, in such a way that the value ofthefactor 6/5 in CUI as well
as the occurrence of the negative, linear, C / a-term in Cu are established as quantitatively
significant aspects of the behavior of the actual values of C/Co.

Going beyond this we will show that while the term (6E/5G) (c 2/a 2
) originates from what may

be designated as the interior solution contribution of the boundary value problem of the
end-loaded cantilever, we have that the terms linear in c /a which occur in Cu/Co, as well as the
corresponding terms in the quantities CL4/Co and CU2/Co which are obtained in what follows, are
in fact boundary layer solution contributions of our boundary value problem. Insofar as these
boundary layer solution contributions are concerned we mention in particular our detailed
analysis of the structure of the layer, with the number and the magnitudes of distinct
characteristic lengths which are found being well-defined functions of certain moduli ratios of the
material of the beam.

In regard to the upper and lower bound formulas used in this work, we have previously noted

tPreparation of this paper, which represents an extended version of material included in the doctoral dissertation of the
first-named author (UCSD, September 1974) has been supported by the Office of Naval Research, Washington, D.C.
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that "inequalities of a similar nature have been stated earlier by others, in particular by C. Weber,
but as far as we know not for the problem which is here under consideration." A review of the
literature undertaken by us since has established that the above statement should be amplified by
referring to a specific publication by Weber [3], which considers in particular an isotropic
homogeneous beam on two simple supports with a concentrated load at midspan, in such a way
that the formulation for one-half of this beam is effectively equivalent to the formulation of our
cantilever beam problem. When interpreted in this manner the work of Weber includes a formula
Cu ::::; C::::; CUI, where CudCo = 1+ 12(1 + v)c 2/5a 2 and Cu/Co = 1- v2 +2(1 + v)c 2/a 2

, consis
tent with the formulas for laminated orthotropic beams given in [1].

FORMULAnON

We restate our plane stress problems once more in the form of differential equations

CT••• + 'T. y = 0, 'T .• + CTy•y = 0, (I)

CTy CT.
V.y =-E - v-E '

y m

'T
U. y + V., = G' (2)

for the domain - c ::::; y ::::; c, 0::::; x ::::; a, together with boundary conditions of the form

x = 0; CT. = 0, V = - V,
x = a; u = 0, v = 0,
y = ± C ; CTy = 0, 'T = O.

(3)
(4)
(5)

In this we assume that Em = (EEy)1/2 and that E, Ey, v and G are given constants, with v 2 < I as
condition for strain energy positive definiteness.

Evidently the uniform end deflection V will be associated with an end force P given by

in the form

P = fc 'T(O, y) dy = fc T(x, y) dy,

V=CP,

(6)

(7)

and our objective is the determination of upper and lower bounds for C, as a function of the given
parameters E, Ey, v, G, c and a.

In order to obtain these bounds we make use of the fact that the work quantity PV is bounded
in terms of potential and complementary energy approximations Id and I"

(8)

where

(9)

and

(10)

In this u., U y and 'T must satisfy the equilibrium differential equations together with the
prescribed stress boundary conditions, and u and v must be differentiable functions which satisfy
the displacement boundary conditions of the given problem. Our procedure from here on is then to
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minimize Id and maximize L with reference to certain systems offunctions 0'., O'y, T, U and v, and to
discuss the bound relations

CL C Cu-<-<
Co - Co - Co'

where

(11)

(12)

which follow from (8) upon eliminating P through use of equation (7).

UPPER BOUND CALCULATION

We consider an equilibrium stress system of the form

(13)

(14)

(15)

where t =x/a and 1'/ = Y/c are dimensionless coordinates, p = c/a, primes indicate differentia
tion with respect to t, and the constant A as well as the function F(t) are arbitrary except for the
condition F(O) = O.

We introduce equations (13-15) into (9) and perform the indicated integrations with respect to
1'/. In this way we obtain an expression for Is of the form

(16)

where

Maximization of L with respect to A, for fixed F, gives as expression for A,

3
A = 1+ (6E/5G)p2 + I'

and therewith

v 2 1
Is

•
max = 2Co 1+(6E/5G)p2+r

Introduction of (19) into equation (12) gives

Cu 6E 2

Co = l+ SG P + I,

(18)

(19)

(20)

where it remains to choose the function F(t), with the simplest choice, F(t) = 0, evidently
leading to the previously obtained bound
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In what follows we will obtain a value Imin by determining the function F(O from the
variational equation 8I = 0, together with the constraint condition F(O) = O.

Application of the standard rules of the calculus of variations now leads to the Euler
differential equation

(21)

and to the Euler boundary conditions

(22)

Appropriate integrations by parts in the expression for 1, in conjunction with equations (21)
and (22), now permit a simplification of the expression for Imin , as follows:

24 2{ E vE I }
Imin=-5P G F(1)+Em[F(1)-F(1)]. (23)

It remains to solve the differential equation for F, subject to the associated four boundary
conditions, and to introduce the value of Imin into equation (20) for Cu/C,. In this way we obtain
an expression for CU2/Co , which can be written in the form

where A = py(E/G). (J = p~/(E/Ey), and

XI = K\K2(K\2- K/),

X2 = (K/ + 11 p/rr2)K2 tanh K, - (K Z
2+ 11 v/rr2)K, tanh K2 ,

X3 = (K\2- K/) tank K 1 tanh K 2 ,

X = (K\2 + 11 V/(J'2)2K2tanh K\ - (K Z
2+ 11 v/(J'2fK, tanh Kz,

(24)

(25)

with K \ and K2 being the two roots with positive real parts of the characteristic equation

(26)

that is,

(27)

when [2v + y(90/11)]1/2(J' < A, and

when A < [2v + y(90/11)f /2 (J'.

LOWER BOUND CALCULATION

We assume as expressions for displacements

(29)
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where

We introduce (29) into equation (10) and carry out all 1)-integrations. This gives

We now set 8Id = 0 and obtain the Euler differential equations

(g, + f~), = 0,

as well as the Euler boundary conditions

g;(O) = g;(O) = o.

965

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Integration by parts in (31), with the use of equations (30) and (32) to (36), gives as expression
for Id •mm ,

With this there follows from equation (12) as expression for the new lower bound,

CL4 Az

Co gl(O) +f~(Or

(37)

(38)

In order to evaluate (38), we must solve the system (32) to (35) subject to the boundary
conditions (30) and (36). The result can be written in the form

where

x, = k,k2(k,z- k/),

xz = k,kz(k, tanh k, - kz tanh kz),

X3 = (k/ - k/) tanh k, tanh kz,

x = k,kz(k,3 tanh k1 - k/ tanh kz),

with k" kz being the two roots with positive real parts of the characteristic equation

(39)

(40)

(41)
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(42)

when [28(1- v 2)/3f/·(], < A, and

ASYMPTOTIC BOUND FORMULAS

Consideration of the expressions (27), (28), (42), and (43) for the roots K j and ki of the
characteristic equations (26) and (41) indicates the existence of the following order of magnitude
relations,

. A2 (4)(1) (]'2 = 0(1): Re(K" k,) = 0 7; , (44a)

(44b)

Furthermore, the hyperbolic tangent functions in (25) and (40) can be effectively replaced by
unity for sufficiently large real parts of their arguments, say when

4~ Re{K;, k,},

and the bound formulas (24) and (39) then can be written in the form

CU2 6 2 C 2 C 3C = 1+SA - C,(]' - 2(]' - 3(]',

where,

9y(11)v 2 [A 2+ (y(9O/l1) - 2v) (]'2r'2(]'

C, = 70 A2 + (y(45/22) - y(22/45)V 2
)(]'2'

3v2[A 2+ y(28(1- v 2)/3)(],2]1/2(],

CI = 15 A2 +y(7(1- v2)/3)(]'2 ,

9v (I-y(22/45)v)(A 2
- V(]'2)

C2 = 35 A2 + (y(45/22) - y(22/45)V 2
)(]'2'

2v A2 - V(]'2

C2 = 5 A2 +y(7(1 - v 2)/3)O'2'

3 (A 2 - V(]'2)2[A 2 +(y(9O/11) - 2V)(]'2]1/2

C3 = 35y(10) [A 2 + (y(45/22) - y(22/45)V 2
)(]'2](]'3 ,

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

We note that with (]' and A both proportional to p we have that C as well as Ci are independent of
p so that CU2/Co as well as CL./Co come out to be third-degree polynomials in p.
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Replacement of the hyperbolic tangent functions by unity is readily seen to be equivalent to
the assumption that the functions F, f; and g; describe a boundary layer phenomenon in the
region adjacent to ~ = 1. The form of equations (44) and (45) gives as conditions for the existence of
a boundary layer the relations

A2

(J' "" 1, (54a)"2 = 00):
(J'

A2

A",,1. (54b)14::"2:
(J'

In view of the defining relations for A and (J', these conditions may be written in the alternate form

E lEy = 0(1)' ~ 41 Ey
G\JE . P~\JE

(55a)

(55b)

We next use equation (44) to obtain information concerning the width of the boundary layers
which are associated with the solution of the given problem. It is apparent that there exist either
one or two boundary layers, in accordance with the following pattern

(56a)

(56b)

As (EIGh/(EyIE) approaches unity from above the two layers of width b l and b2 coalesce into
the one layer of width b.

ASYMPTOTIC FORMULAS FOR ISOTROPIC BEAMS

Setting Ey = E and E = 2(1 + v)G, we will have u = p, and A = py'2(1 + v) and, in accor
dance with equation (54a), the asymptotic formulas (46) to (53) now apply as long as p "" 1.

We will refrain from rewriting equation (46) to (53) for this special case and instead refer to Fig.

10001 ~

Co

09998

0.9997 f------'--'------'

175

100

Fig. 1. Dimensionless flexibilities CUI/C", Cu,/c", CI.3/C" and CL4/C" as functions of p =cia for isotropic
beams with v = 1/3.
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Table I. Upper and lower bounds for influence coefficients for isotropic beams with v = 1/3

CL/Co cu/co

0.0 1.0000 1.0000

O. I 1.0261 1.0290

0.2 I. 1142 I. 1208

0.3 1.2G33 1.2749

0.4 1.4129 I. 4908

0.5 I. 7423 I. 7680

0.6 2.0709 2. lOG I

0.7 2.4579 2. 5046

0.8 2. (jOZ7 2.9630

0.9 3. -10-!6 3. 480 ~

1.0 3. 'Jb29 4.0\77

-~~-- -----_._---~-----

1 which shows the values of Cu2/Co and CL4/Co for lJ = 1/3 in the range O:s p < 1/2 together with
the previously obtained less accurate bounds. The curves in the inset show the behavior of the
bounds in the neighborhood of p = O. We see that the effect of the "dominant" linear terms in p,
which make CICo < 1 in a small neighborhood of p = 0 is in fact of no practical significance
whatsoever for the case of the isotropic beam.

We supplement the results shown in Fig. 1by a short table which gives numerical values in the
range 0 :S P s 1·0, and which shows the smallness of the error associated with the approximation

C ,."HCU2 +CL4), up to values of the depth-span ratio for which it is no longer appropriate to

use the word "beam."

RESULTS FOR ORTHOTROPIC BEAMS

Figure 2 shows values of the bounds as a function of A for several values of the auxiliary
parameter!.t = a 2/A 2, on the basis of the exact bound expressions (24) and (39), as well as on the
basis of the asymptotic expressions (46) and (47). We see that the exact and the asymptotic values
coincide effectively in the entire range of A-values shown, for small values of !.t. As the values of
!.t increase, the range of validity of the asymptotic formula extends over a smaller and smaller
A-range. Specifically, if we write a IA = V!.t and note that according to (54a) we must now have

Fig. 2. Dimensionless flexibilities Cu21 C" and CL41c.. as functions of A= y(E10) c/afor orthotropic beams
with v = 1/2 and !L = O/Y(EE.) = O. 1·5. 100, together with values of Cu/C" and CL2/C" for!L = 100.
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(T "S 1 we find that we must also have A\I IL "S 1, or A "S 1/\/IL,as condition for the validity of the
asymptotic formula. For IL = 100 this means that the asymptotic results should deviate from the
exact bound results as soon as 0·1 "S A, a conclusion which is in fact substantiated by the dots in
Fig.2.

Our calculations also show that the effect of the prevented end-section transverse normal
strain, which is insignificant for isotropic beams, can be quite significant for beams with strong
orthotropy.

We supplement our discussion with an explicit statement of the exact bound results (24) and
(39), in comparison with results of exact solutions of the given boundary value problem, for the
limiting cases E y =0 and E y = 00.

We deduced in [2] that when Ey =0, then

(57a)

We now find from equation (24) and (39),

(5Th)

(57c)

Numerical calculations for IJ = 1/2 show that now CL4 is closer to C than is CU2 • As shown in
Table 2, we have that when O:s A :s 0·5 CL4 agrees with C to within 1/100 of one percent. We also
note that CU2 as well as CL4 are discontinuous at A = 0, just as C comes out to be, but that the
magnitude of the discontinuity of CU2 does not agree with that of C, whereas there is agreement
for CL4 and, incidentally, also for Cu, as may be readily deduced from the formula on page 961
which leads to the result Cu/C = 1- 1J2 +A2 +O(A 4) for the limiting case Ey = O.

When E y = 00 the bound formulas (24) and (39) reduce to the following form

CU2 = 1+~A 2 _ 3 tanh 3\/(5/2)1AA3

Co 5 70\/(5/2) ,

Table 2. Comparison of bounds with the exact flexibility coefficient when Ey = 0and II = 1/2

A c/C CL/Co
C

u2
/C

o0

0.0 0.7500 0.7500 0.8657

0.1 0.7619 0.7619 0.8782

0.2 0.7979 0.7979 0.9152

0.3 0.8578 O. 8578 0.9770

0.4 0.9414 0.9414 1.0633

0.5 1.0486 1.0486 1. 1738

0.6 1.1792 1.1791 1.3085

0.7 1.3329 1.3328 1.4669

0.8 1.5096 1.5092 1.6488

0.9 1. "/089 1.7082 I. 8'40

1.0 1.9306 1.9294 2.0821

-------------

(58a)

(58b)
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The exact solution for this case can be obtained by extending results in [4], as shown in the
Appendix. We find

(58c)

with kn as the sequence of positive roots of the transcendental equation tan kn = kn.
A comparison of the bound results (58a) and (58b) with the exact result (58c) shows that the

bounds obtained here are in agreement with the exact formula insofar as terms up to the order p2
are concerned. For small A, the remaining terms in equations (58a, b, c) are of the order A3.

Numerical results obtained using (58a) and (58b) when I! = 1/2 are given in Table 3. In view of the
closeness of these bounds a calculation of the exact expression (58c) which involves summation
of an infinite series, is not undertaken.

Table 3. Upper and lower bounds for flexibility coefficients for orthotropic beams when Ey =' 00 and v=' 1/2

A CL/Co Cu/Co

0.0 I. 0000 I. 0000

0.1 1.01196 I. 01197

O. Z I.OH6 1.0478

0.3 I. 106? 1.1073

0.4 I. 1895 I. 1903

0.5 l. L951 1. lCJn7
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APPENDIX

In what follows we indicate the derivation of the exact value (58c) of the flexibility coefficient
C for the limiting case Ey = oc, in extension of work by Hildebrand[4],

We have from [4] as expressions for ax and T,

_~ {s ~ i A sin kn'l) sinh kns/A}
ax - 2pc 'I) +3 n~1 kn sin kn cosh knlA '

_ 3P {I 2 4~ cos kn'l) - cos kncosh kns/A}
T-- -'I) +- L..J

4c 3 n ~ I kn sin kn cosh kn 1A '

with kn as the sequence of positive roots of tan kn = kn•

We also have from [4] as equations for v(s,'I)) = V(O,

(Al)

(A2)

v"(~) T,~_ax.T1

a G Ep'
v(l)=O, v'(l) = ~f T(l,'I))d'l). (A3)

We solve (A3) for v(g) and in this way find

P { 1 = 1 ( A) kn}V = - v (0) = 2pG 1+ A2 + 2~ k/ 1- k
n

tanh A ' (A4)
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and from this, with Co = 1/2Ep 3,

971

(AS)

Equation (AS) assumes the form (S8c) upon establishing, by contour integration, that ~ l1kn
2

=

lIto.


